
Modular and Automated
Type-Soundness Verification for Language Extensions

Florian Lorenzen
TU Berlin, Germany

Sebastian Erdweg
TU Darmstadt, Germany

Abstract
Language extensions introduce high-level programming constructs
that protect programmers from low-level details and repetitive tasks.
For such an abstraction barrier to be sustainable, it is important that
no errors are reported in terms of generated code. A typical strategy
is to check the original user code prior to translation into a low-
level encoding, applying the assumption that the translation does not
introduce new errors. Unfortunately, such assumption is untenable
in general, but in particular in the context of extensible programming
languages, such as Racket or SugarJ, that allow regular programmers
to define language extensions.

In this paper, we present a formalism for building and automati-
cally verifying the type-soundness of syntactic language extensions.
To build a type-sound language extension with our formalism, a
developer declares an extended syntax, type rules for the extended
syntax, and translation rules into the (possibly further extended)
base language. Our formalism then validates that the user-defined
type rules are sufficient to guarantee that the code generated by the
translation rules cannot contain any type errors. This effectively
ensures that an initial type check prior to translation precludes type
errors in generated code. We have implemented a core system in
PLT Redex and we have developed a syntactically extensible variant
of System Fω that we extend with let notation, monadic do blocks,
and algebraic data types. Our formalism verifies the soundness of
each extension automatically.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; I.2.2 [Automatic Programming]: Program transfor-
mation; D.3.2 [Language Classifications]: Extensible languages

General Terms Languages, Verification

Keywords language extensibility, type soundness, automatic veri-
fication, metaprogramming, macros, SugarJ

1. Introduction
Whenever code generation is used to abstract from low-level details
or to provide high-level interfaces to software developers, type
errors in generated code jeopardize the abstraction barrier: First,
error messages are in terms of generated code and thus expose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2500365.2500596

programmers to low-level details that should be hidden. Second,
manual inspection of generated code may be necessary to identify
the cause of the type error. Third, since a type error in generated code
may be caused by either a defective generator or by invalid generator
input, manual inspection of the generator may be necessary to
identify the generator’s contract and whether the input adheres
to that contract. Type errors in generated code present a serious
usability threat for abstractions implemented via code generation.

In this paper, we address above problem in the context of code
generators that extend a base language with new language constructs
by translation into other constructs of the base language. Such
code generators are sometimes referred to as desugarings. Many
compilers employ desugarings to transform programs of the input
language into a core language, so that subsequent compiler phases
can focus on fewer language constructs. Moreover, macro systems
empower regular programmers to introduce new language constructs
via desugaring transformations. Despite wide-spread application of
desugarings, few existing compilers and no existing macro system
can guarantee the absence of type errors in desugared code.

To this end, we present SOUNDEXT, a formalism for soundly ex-
tending a base language with new language constructs. SOUNDEXT
statically and modularly validates a language extension and guaran-
tees that desugared code does not contain type errors. More specifi-
cally, for each language extension, SOUNDEXT requires the defini-
tion of (i) an extended syntax, (ii) type rules for checking programs
that use the extended syntax, and (iii) a desugaring transforma-
tion that translates a program of the extended syntax into a base-
language program. SOUNDEXT then derives proof obligations for
each user-defined type rule: For all programs permitted by the type
rule, the desugared version of these programs must have the same
type. SOUNDEXT synthesizes the corresponding proof for each type
rule by instrumenting the inference engine with additional axioms
that correspond to the assumptions of the user-supplied type rules.
We present the details of our methodology in Section 3, where we
also show that the validity of each derived proof obligation entails
the following high-level property:

Γ `ext e : T ∧ e ∗ e′ ∧ e′ ∈ Base ⇒ Γ `base e′ : T

That is, given a program e that is well-typed in the extended type
system, if this program desugars into a base-language program e′,
then the desugared program is well-typed in the base type system. In
other words, type checking the user-supplied program is sufficient
to ensure the absence of type errors in desugared code.

To demonstrate the expressiveness of SOUNDEXT, we instantiate
the formalism for SugarFomega, a syntactically extensible variant
of System Fω . Besides standard lambda and type abstraction, Sug-
arFomega features variants, records, and higher-order iso-recursive
types as well as SugarJ-like macros with flexible syntax [5, 8, 10].
Using this macro system, SugarFomega programmers can introduce
new language constructs at the level of expressions, types, and kinds.
Accordingly, programmers define additional “type” rules using type
and kind judgments. We have implemented language extensions of

331

SugarFomega for let expressions, monadic do blocks (no implicit
dictionary passing), and algebraic data types. SOUNDEXT modularly
validated each of these extensions and guarantees that they are sound
with respect to the type system of System Fω .

In summary, we make the following contributions:

• We present the design of SOUNDEXT, a formalism for type-sound
language extensibility.
• SOUNDEXT automatically verifies the type-soundness of lan-

guage extensions by deriving type rules for generated programs
and proving the admissibility of these type rules.
• To prove admissibility we check derivability by instrumenting

the type checker to use a type rule’s premises as additional
axioms.
• We present a formalization of SOUNDEXT based on PLT Redex

and prove that the desugarings of successfully verified language
extensions adhere to type preservation and progress.
• We verify that SOUNDEXT extensions compose soundly as long

as there is no syntactic overlap.
• We implement the extensible language SugarFomega based on

SOUNDEXT and show how SOUNDEXT enables us to soundly
extend SugarFomega with let expressions, monadic do blocks,
and algebraic data types.

2. Illustrating example
Figure 1 shows the standard type rules of the simply-typed lambda
calculus as they, for example, appear in Pierce’s Types and Pro-
gramming Languages [22]. The soundness of the corresponding
type system is an established fact in the programming-language
community. However, when extending such a base language, one
has to manually reestablish the soundness theorem for the extended
language [31]. As we demonstrate with SOUNDEXT in this paper, we
can automatically verify the soundness of the extended type system
for language extensions that are defined through translation into the
base language.

For example, consider the extension of the simply-typed lambda
calculus with let expressions:

e ::= . . . | let x :T = e in e

We can rewrite let expressions to the simply-typed lambda calculus
using the following desugaring:

desugar-let : (let x :T = e1 in e2) 99K (λx :T.e2) e1

Since we want to detect and report type errors prior to desugaring,
we extend the type system of the simply-typed lambda calculus with
a type rule for let expressions:

T-LET
Γ ` e1 : T1 Γ, x :T1 ` e2 : T2

Γ ` let x :T1 = e1 in e2 : T2

In the hope of preventing type errors in generated code, we
use the extended type system to validate a user program prior to
any desugaring. This way, the rewrite rule desugar-let will only be
applied to a let expression that has been checked by T-LET. For
example, the expression

let n : Nat = 17 inn+n

is well-typed since 17 has type Nat and the judgment n : Nat `
n+n : Nat holds. Therefore, it is safe to apply the rewrite rule, that
is, the rewriting generates a well-typed expression:

(λn : Nat.n+n) 17

Conceptually, there are two sources of possible errors. First, the
rewrite rule may be defective and produce ill-typed or wrongly
typed code, even though the input let expression was well-typed
according to T-LET. Second, the type rule may be defective and admit
let expressions that are not well-typed. For example, a defective
rewrite rule (let x :T = e1 in e2) 99K (e2 e1) would translate above

T-VAR
x :T ∈ Γ

Γ ` x : T
T-ABS

Γ, x :T1 ` e : T2
Γ ` λx :T1.e : T1 → T2

T-APP
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

Figure 1. Type rules of the simply-typed lambda calculus.

let expression into the ill-typed expression (n+n) 17. Conversely,
suppose we forgot the first premise in the definition of the type
rule T-LET. This defective type rule would admit the expression
(let f : Nat→Nat=17 in f 0), which the (correct) rewrite rule desugar-
let translates into the ill-typed program (λf : Nat → Nat.f 0) 17.
Technically, these two sources of errors are two sides of the same
coin: To guarantee the absence of type errors in generated code, we
must ensure that the rewrite rule and the type rule are correct with
respect to each other.

To this end, we can read the type rule T-LET as a contract for
the rewrite rule desugar-let: The rewrite rule may assume all input
adheres to the type rule T-LET, and the rewrite rule must produce
an expression of the type declared in the type rule. In essence,
the rewrite rule must be type-preserving with respect to the type
rules. If this holds, we can type check the user program once before
desugaring and know that the desugared program has the same type.

To verify that user-defined rewrite rules preserve types according
to the user-defined type rules, we proceed as follows. We symbol-
ically apply the rewrite rule to the subject of the corresponding
type rule. For example, for the let extension we obtain the type rule
T-LET’:

T-LET’
Γ ` e1 : T1 Γ, x :T1 ` e2 : T2

Γ ` (λx :T1.e2) e1 : T2

We could use this type rule to validate the code generated by desugar-
let. Instead, we want to show that this type rule is admissible, that is,
for all expressions typeable through applications of T-LET’, there is a
derivation in the type system without T-LET’ given the same context
yielding the same type. Accordingly, we do not need T-LET’ to type
check the generated code, because the other type rules already are
expressive enough.

SOUNDEXT automatically infers proof obligations for the admis-
sibility of derived type rules. But SOUNDEXT also automatically
verifies these proof obligations by checking the derivability of type
rules, which entails admissibility. We can reuse the type system for
checking the derivability of a derived type rule if (i) we interpret
all metavariables in the assumptions and conclusion as constants
that only unify with themselves and (ii) we temporarily add the
assumptions of the derived type rule as axioms to the system. A
type rule then is derivable if we can find a derivation of the modified
conclusion given the additional axioms.

For example, for T-LET’ we try to find a derivation for Γ `
(λx :T1.e2) e1 : T2 given the axioms (AX1) Γ ` e1 : T1 and (AX2)
Γ, x :T1 ` e2 : T2. Indeed, we can infer the following derivation,
where the occurring metavariables Γ, x, T1, T2, e1, e2 are constants.

T-APP

T-ABS

AX2
Γ, x :T1 ` e2 : T2

Γ ` λx :T1.e2 : T1 → T2
AX1

Γ ` e1 : T1
Γ ` (λx :T1.e2) e1 : T2

This derivation shows that the type rule T-LET’ is derivable. As
consequence, given an expression that is well-typed according to the
user-defined type rule T-LET, we know that the expression generated
by desugar-let has the same type as the original let expression.
Accordingly, no type errors can emerge from the code generated by
the desugaring rule.

In the following section we describe the approach followed by
SOUNDEXT formally and prove that the derivability of derived type
rules indeed entails type preservation of desugarings.

332

t ::= x | (c t) Terms
J ::= t ` t : t Judgments
I ::= ∀x. J ⇒ J Inference rules
R ::= t 99K t Rewrite rules
E ::= ext I R Extensions
B ::= I Base systems

Figure 2. Syntax for declaring extensions.

3. SOUNDEXT
A language extension defines new syntax, type rules for that syntax,
and rewritings of that syntax into the base language. SOUNDEXT

provides a language for the declaration of such extensions and a
verification procedure for checking type soundness of extensions.
We verify that our verification procedure is sufficient to guarantee
that no type errors are in desugared code.

Our formalization is based on an implementation of SOUNDEXT

in PLT Redex [11].1 However, whereas our PLT Redex implemen-
tation contains a concrete rewrite engine and inference engine, we
parameterize our formalization over these engines and formulate
minimal assumptions. Moreover, like the PLT Redex implementa-
tion, our formalization ignores all aspects of concrete syntax and
assumes programmers write abstract syntax trees directly; our im-
plementation of SugarFomega (see next section) supports the decla-
ration of concrete syntax for extensions.

3.1 A language for declaring extensions
We define abstract syntax for the declaration of extensions as shown
in Figure 2. We use a generic term representation to generalize over
the expression, types, and contexts of any particular language. Es-
sentially, a term t is an abstract syntax tree consisting of constructor
applications (c t) (overlines denote sequences) and metavariables x.
We use these terms for declaration of judgments J . A judgment
t1 ` t2 : t3 relates a subject t2 to an object t3 under a context t1.
We conventionally choose metavariable names that resemble type
checking as in Γ ` e : T .

Multiple judgments make up an inference rule, where all but
the last judgments are premises and free metavariables must be
explicitly quantified. For example, we can encode the type rule
T-ABS for lambda abstraction in this format:

IABS = ∀ Γ x e T1 T2. (Bind Γ x T1) ` e : T2

⇒ Γ ` (abs x T1 e) : (Fun T1 T2)

For axioms, that is, inference rules without premises, we simply
write ∀x. J; for inference rules that do not bind any metavariables,
we drop the quantifier J ⇒ J .

Similar to inference rules, we can use terms to specify rewritings
e1 99K e2, where e1 may contain metavariables to pattern match on
a term and e2 is a generation template that can use the metavariables
bound during pattern matching. In contrast to inference rules all
meta-variables of the left-hand side of a rewrite rule may be
instantiated during pattern matching. We therefore omit an explicit
quantification. The syntax of rewrite rules is agnostic to the meaning
of the terms, it may be an expression or a type, for example.
Nevertheless, we restrict ourselves in this section to rewritings of
expressions, that is, only terms in the subject position of inference
rules. In Section 4 we present a generalized form that also rewrites
types.

Based on these definitions, we define an extension as a list of
inference rules and rewrite rules.

The base language B only consists of inference rules but no
rewrite rules. The dynamic semantics of a base language and its
relationship to the static semantics is completely orthogonal to

1 Implementation available online: http://sugarj.org/fomega

R-MATCH
rewrite R e = e′

e R e′
R-CON

e2 R e′2
e1 6 R e′1 ∀e1 ∈ e1

c e1 e2 e3 R c e1 e′2 e3

Figure 3. Specification of a left-to-right, one-step rewriting.

SOUNDEXT since we are only interested in typing statements about
base language programs.

3.2 Assumptions about the rewrite engine
SOUNDEXT is not tied to a specific rewriting algorithm. We assume
a function rewrite R e that performs a single rewriting step by one
of the rules in R or returns fail if no rule is applicable. Since we
want to apply the rewrite function to subjects of inference rules
that contain metavariables, we must require that rewriting is closed
under metavariable substitution:

Assumption 1 (Metavariable substitution-invariance).
If rewrite R e[x] = e′[x], then rewrite R e[t] = e′[t].

We write e[x] to denote a term e in which at most the metavariables
x appear free, and e[t] for the substitutions of these metavariables
by the terms t.

This assumption requires that rewriting is independent of
metavariable occurrences. For example, consider the following
two rewrite rules:

plus1 : (Plus (Sucm) n) 99K (Suc (Plusm n))

plus2 : (Plusm n) 99K n

Given the input term (Plus x Zero) with metavariable x, the rewrite
function might do pattern matching to apply plus2 and return Zero.
However, if we substitue (Suc y) for x, rule plus1 becomes applicable
and yields (Suc (Plus y Zero)). This violates Assumption 1 because
applying the same substitution to the old result does not yield the
new result. However, it is easy to recover this problem by expanding
the pattern matching of plus2:

plus2’ : (Plus Zero n) 99K n

Given this rule, the rewrite function would fail for the input term
(Plus x Zero), which is consistent with Assumption 1. In general,
a rewrite engine should arrange that if a rewrite rule inspects a
subtree, this subtree cannot match a metavariable. In our PLT Redex
implementation, we assume that user-defined rewrite rules already
adhere to the above properties.

An alternative solution to the problem illustrated by plus1 and
plus2 is to require rewrite to perform top-to-bottom matching of
rules and to reverse the order of the two. In that case, plus2 would
be applied for boths inputs. However, this would not relieve us
from Assumption 1 and we therefore decided to leave the order
of matching unspecified since this poses fewer assumptions on the
rewrite engine and has a more declarative feeling.

Based on the function rewrite, we define the function e1 R e2
that performs a top-down, left-to-right, one-step rewriting of e1
using rewrite (Figure 3). We write e ∗

R
e′ for the reflexive,

transitive closure of e R e′.
Finally, we require that rewrite does not succeed on terms of the

base language. As we will later show, this ensures that the structure
of base-language programs is preserved by R.

Assumption 2 (Rewrite fails on base-language constructors). For
any base-language constructor c, rewrite R (c e) = fail .

3.3 Assumptions about the inference engine
SOUNDEXT requires developers to declare static analyses for exten-
sions via inference rules. To reason about the user-defined inference
rules and to prove their soundness, SOUNDEXT employs an inference

333

http://sugarj.org/fomega

engine to compute derivations. As for the rewriting, SOUNDEXT

does not require any specific inference engine. Instead, we assume
an inference engine that, given inference rules I and a judgment
J , checks if J can be derived using the rules I. If successful, the
inference engine yields a concrete derivation I � J . Without going
into any detail, we require correctness of the inference engine:

Assumption 3 (Correctness). If the inference engine yields a deriva-
tion I � J , then the derivation only consists of valid applications of
the rules in I.

Since we want to use the inference engine not only for checking
concrete programs but also for mechanically proving entailment
between judgments, we require proper handling of metavariables
by the inference engine. Specifically, like for the rewrite engine, we
require that the inference of derivations is closed under metavariable
substitution (in the context of logical consequences this property is
known as structurality [17]):

Assumption 4 (Metavariable substitution-invariance).
If I[x] � J [x], then I[t] � J [t].

This requirement means that if the inference engine is able to derive
J [x] using I[x] without any knowledge about the free metavari-
ables x, then a similar derivation must exist when instantiating the
free metavariables with concrete terms. For example, if the inference
engine can deduce a derivation for the identity function

(IVAR IABS IAPP) � (Γ ` (abs x T x) : (Fun T T))

then a derivation must exist for any replacements of the free
metavariables Γ, x, and T .2

Recall that our inference rules quantify bound metavariables, as
is visible in the inference rule for lambda abstraction IABS shown
in Section 3.1. SOUNDEXT capitalizes the fact that inference rules
can also contain free metavariables to install assumptions about
specific metavariables. In contrast to bound metavariables, free
metavariables in an inference rule may not be instantiated when
applying the inference rule. For example, when deriving

(∀Γ. Γ ` e : T) � ∅ ` e : T

only the bound variable Γ gets instantiated to ∅ whereas e and T
must match literally. Accordingly, we could not derive ∅ ` e2 : T
from the same inference rule, because e does not literally match e2.

Finally, we require the inference engine to satisfy the cut rule:

Assumption 5 (Cut). If I � J1 and I J1 � J2, then I � J2.

We do not make any assumptions on decidability of the inference
rules. Usually, the rules of a base system are in an algorithmic form
to obtain a complete type checker but this is not required. Further-
more, inference rules of an extension may lead to an undecidable
system, even if the base system is decidable. That is, we have no
means to prevent nontermination of the type checker.

In our PLT Redex implementation, we do not use quantifiers in
inference rules but implicitly quantify over all free variables. To
encode non-unifiable metavariables, we wrap such metavariables
in (symbol x) nodes. Otherwise, our inference engine performs a
simple proof-tree search and respects both metavariable substitution-
invariance and the cut rule.

3.4 Extension soundness
Using the rewrite engine and the inference engine, we define a
verification procedure for the soundness of extensions relative to a
base system. The basic idea is to show that rewrite rules are type-
preserving. We do so by (i) deriving an inference rule that admits
exactly the programs generated by the rewrite rule but requires the

2 Note that there is only a single syntactic category in SOUNDEXT: terms t.
As far as SOUNDEXT or the inference engine are concerned, any term can
be used to represent any object-language construct, such as a variable.

An extension ext I R is sound with respect to a base system B if for
all typing rules I ∈ I the following steps succeed:

Let I = ∀x. J [x]⇒ (Γ[x] ` e[x] : T [x]).
Let y be fresh and distinct variables with len y = len x.

1. Perform one-step rewriting of rule’s subject with extension’s
rewrite rules:

e[x] R e′[x]

2. Show that derived rule ID = ∀x. J [x]⇒ (Γ[x] ` e′[x] : T [x]) is
derivable in B I:

B I J [y] � (Γ[y] ` e′[y] : T [y])

Figure 4. The SOUNDEXT verification procedure.

original type, and (ii) verifying that this derived rule is derivable,
that is, all programs it admits were already admitted by the original
inference rules. Together, this shows that all programs generated
by the rewrite rule are admitted by the original inference rules, and
thus must be well-typed. The full verification procedure is shown in
Figure 4.

In Step 1, we rewrite the subject of the inference rule I by
applying the rewrite function. Since the subject of an inference
rule typically includes metavariables, this amounts to a symbolic
rewriting of the rule’s subject. Due to Assumption 1 on the rewrite
engine, the rewritten subject e′[x] captures all programs that can
ever be generated by the rewrite rules R from programs admitted
by I.

In Step 2, we define a derived inference rule ID that uses the
rewritten subject e′[x] but has the same premises, context, and object.
The derived rule admits exactly those programs that can be generated
by R from programs admitted by I. By showing that ID is derivable
in B I, we ensure that generated programs have derivations in B I

without ID .
To verify the derivability of ID , we instantiate its bound variables

with fresh variables y. We then install the premises of the derived
rule as axioms J [y] into the inference engine and try to derive the
conclusion of the derived rule Γ[y] ` e′[y] : T [y]. If this derivation
succeeds, it means the rules from B and I prove that the premises of
the derived rule entail the conclusion of the derived rule for any y.
Intuitively, we can use this derivation to eliminate any application
of the derived rule ID .

For example, for the let extension shown in Section 2, we prove
the derivability of the derived rule T-LET’ as follows:

(IVAR IABS IAPP ILET (Γ′ ` e′1 : T ′1) (Γ′, x′ :T ′1 ` e′2 : T ′2))

� (Γ′ ` (app (abs x′ T ′1 e
′
2) e′1) : T ′2)

Note that the same unbound, fresh variables Γ′, x′, e′1, e′2, T ′1, and
T ′2 appear in the axioms and the goal, but not freely in any of the
other rules. Since the variables in the axioms are not quantified,
the inference engine may only apply axioms to terms derived from
the goal (this condition is part of Assumption 3). Note also that
we permit the usage of an extension’s own inference rules I in the
derivability check. This enables extensions to desugar into recursive
occurrences of the same extension without requiring the exact loop
invariant as a premise of the inference rule.

Our PLT Redex implementation follows the verification proce-
dure exactly, with the exception that instead of substituting fresh
variables we “lock” metavariables in (symbol x) nodes.

3.5 Metatheory
The goal of our verification procedure for extension soundness is to
ensure that desugarings cannot generate code with type errors. The
following is our main theorem:

334

Theorem 1 (Preservation). Let ext I R be a sound extension with
respect to B. If B I � (Γ ` e : T), e ∗

R
e′, and e′ ∈ term B, then

B � (Γ ` e′ : T).

That is, given a derivation for Γ ` e : T in the extended system,
we apply rewriting steps to the program e until it is desugared
into a term of the base language. We show that the resulting base
term is well-typed in the base system B and satisfies the judgment
Γ ` e′ : T .

Before turning to the proof of Theorem 1, we first prove a few
important lemmas about the rewrite engine, the inference engine,
and sound extensions.

Lemma 1. If e1[x] R e2[x], then e1[t] R e2[t].

Proof. Straightforward by induction on the derivation e1 R e2,
using Assumption 1.

Lemma 2. Let e[x] be a base-language term and e1 = e[t1].
If e1 R e2, then e2 = e[t2] where t1 R t2 for exactly one
(t1, t2) ∈ (t1, t2) and t1 = t2 for all others.

Proof. By induction on the derivation e1 R e2, using that rewrite
fails for terms that start with a base-language constructor (Assump-
tion 2) and that e R e preserves base-language constructors.

The next lemma establishes the crucial property that a single rewrite
step using a sound extension preserves types.

Lemma 3. Let ext I R be a sound extension with respect to B.
If B I � (Γ ` e : T) and e R e′, then B I � (Γ ` e′ : T).

Proof. By induction on the derivation B I � (Γ ` e : T).

Base case: The derivation consists of the application of an axiom
I0 = ∀x. Γ0[x] ` e0[x] : T0[x].

We have e = e0[t], Γ = Γ0[t], and T = T0[t] for some
substitute t of x.
If I0 ∈ I, extension soundness entails e0[x] R e′0[x] and
B I � (Γ0[y] ` e′0[y] : T0[y]) for fresh y. By Lemma 1 and
e0[t] = e we get e′0[t] = e′. By Assumption 4 we can substitute
t for y and get B I � (Γ ` e′ : T) as required.
If I0 ∈ B, then e0[x] is a base language term. By Lemma 2
we have e′ = e0[t′]. Accordingly, we get a derivation of
B I � (Γ ` e′ : T) by instantiating I0 with x = t′.

Step case: Assume the last rule applied in the derivation is

I0 = ∀x. J0[x]⇒ Γ0[x] ` e0[x] : T0[x].

We have e = e0[t], Γ = Γ0[t], and T = T0[t] for some substi-
tute t of x, and B I � J0[t] for all J0[t] ∈ J0[t] (Assumption 3).
If I0 ∈ I, extension soundness entails e0[x] R e′0[x] and
B I J0[y] � (Γ0[y] ` e′0[y] : T0[y]). By Lemma 1 and e0[t] = e
we get e′0[t] = e′. By Assumption 4 we can substitute t for y
and get B I J0[t] � (Γ ` e′ : T). Repeated application of the
cut rule (Assumption 5) yields the required B I � (Γ ` e′ : T).
If I0 ∈ B, then e0[x] is a base language term. By Lemma 2 we
have e′ = e0[t′] and t R t′ for one (t, t′) ∈ (t, t′) and t = t′

for all others. By the induction hypothesis we get B I � J0[t′]
since the extended syntax t is irrelevant in contexts and types
and can be replaced by t. Accordingly, we get a derivation of
B I � (Γ ` e′ : T) by instantiating I0 with x = t′.

We can scale type preservation to the reflexive, transitive closure of
the rewrite relation R:

Lemma 4. Let ext I R be a sound extension with respect to B.
If B I � (Γ ` e : T) and e ∗

R
e′, then B I � (Γ ` e′ : T).

Proof. Straightforward by induction on the derivation e ∗
R
e′,

using Lemma 3.

Finally, we can prove Theorem 1:

Proof of Theorem 1. By Lemma 4, we get B I � (Γ ` e′ : T). Since
we assume e′ ∈ term B and require rewrite rules to fail for pure
base terms, the derivation tree of Γ ` e′ : T cannot contain an
application of a rule from I because extension soundness requires a
successful rewrite for a rule’s subject. Accordingly, the derivation
tree of Γ ` e′ : T only contains instantiations of rules from B,
hence B � (Γ ` e′ : T) as required.

In addition to our main preservation theorem, the verification
procedure also ensures progress of desugarings:

Theorem 2 (Progress). Let ext I R be a sound extension with
respect to B. If B I � (Γ ` e : T), then either B � (Γ ` e : T) or
there is an e′ such that e R e′.

Proof. By induction on the derivation B I � (Γ ` e : T).

Base case: Either the axiom is from the base system B, or by Step 1
of extension soundness and Lemma 1 there is an e′ with e R e′.

Step case: If the last applied rule is from I, Step 1 of extension
soundness and Lemma 1 ensure there is an e′ with e R e′.
Otherwise, assume the last applied rule is from the base system
B. By the induction hypothesis all subderivations are either
derivable in B or their subject can be desugared. If there is at
least one subderivation of the latter kind, then the corresponding
extended syntax must already be part of the current subject e
because base rules cannot pattern match on extended syntax.
Thus, by the definition of R the term e can be desugared.
Otherwise all subderivations are derivable in B, and so is the
current judgment.

This concludes our correctness proof for the verification pro-
cedure of extension soundness employed by SOUNDEXT. We have
shown that our verification procedure guarantees well-typing of
generated base-language programs.

3.6 Extension composition and overlapping definitions
As long as extensions are not syntactically overlapping, SOUNDEXT

supports incremental extension [6] (one extension desugars into code
of another extension) and extension unification [6] (independent
extensions can be unified into a single extension).

For incremental extension, we assume a sound extension
ext I1 R1 with respect to base system B. A second extension
ext I2 R2 can be defined on top of them by desugaring into the
extended base system. We then require that ext I2 R2 is a sound
extension with respect to the extended base system (B I1). Since
we desugar programs e from the double-extended language con-
secutively e ∗

R2
e′ ∗

R1
e′′, twice applying our soundness result

from Theorem 1 proves that the final result e′′ does not contain type
errors if the original program e is well-typed.

For extension unification, we assume two extensions ext I1 R1

and ext I2 R2 both of which are sound with respect to the base
system B. We can compose these extensions into a unified extension
ext I1I2 R1R2. The unified extension is sound with respect to
the base system B, because (i) for every type rule there is a
successful rewriting and (ii) the proof of derivability for a type rule
remains valid in the unified extension. Accordingly, our verification
procedure for extension soundness can be applied modularly to
different extensions before composing them.

In case of a syntactic overlap, the composition of two sound
extensions may be unsound if the type rule of one extension

335

admits a term that is transformed by a desugaring of the other
extension. To retain soundness, we have to cross-check all involved
type rules for all potential desugarings, so that for any concrete
rewriting the generated code is guaranteed to be free of type errors.
This amounts to strengthening the contracts on desugarings by
combining the expectations formulated in multiple type rules. If
this cross-checking fails, the composition must fail. We have not
implemented overlap detection in our PLT Redex implementation
or SugarFomega. As alternative to the detection of overlaps and the
reverification of soundness at composition time, we could restrict the
syntactic flexibility of extensions (as in traditional macro systems)
to guarantee unambiguous syntax [24].

3.7 Summary
We achieve type-sound language extensibility by requiring small-
step desugarings that are applicable to the subject of corresponding
type rules. This way, we can derive type rules that exactly admit
those programs that can be generated from well-typed programs.
By showing that these derived rules are admissible (by checking
derivability), we ensure that the generated programs are well-typed
themselves and do not require further type checking. In particular,
we have shown that extension soundness entails that desugarings
preserve types and do not get stuck.

4. SugarFomega
We have implemented a sound syntactically extensible programming
language SugarFomega3 by combining the base language System
Fω , with SugarJ-like syntactic extensibility, and SOUNDEXT.

SugarJ [5, 8, 10] enables the syntactic extension of a base
language like Java with arbitrary new syntax, given programs
of that syntax can be desugared into the base language. SugarJ
(and SugarFomega) employ the SDF2 syntax formalism [28] for
definition of extended syntax and the Stratego rewrite language [30]
for the definition of desugaring rules. SugarJ organizes language
extensions in modules of the base language itself, so that regular
module-import statements activate extensions locally by bringing
the extended grammar and desugarings into the scope of the current
module.

SugarJ also provides support for program analyses that annotate
the input program with metadata. This information is used in error
messages of the compiler as well as in our Eclipse-based extensible
IDE [7], for example, to show type information in hover help. We
employ the support for analyses to implement the Fω type checker
and the verification procedure for sound extensions.

4.1 The base language System Fω

SugarFomega is based on System Fω and primarily augments it with
a simple module system that is amenable to SugarJ’s module-based
extension mechanism. We also add a few practical features: pair
kinds, type synonyms, records, variants, higher-order iso-recursive
types, and some primitive types. With the exception of higher-
order recursive types and the module system, SugarFomega is fairly
standard and all its components can be found in textbooks [22].

Modules and signatures. A SugarFomega module may import
other modules and contains a sequence of value or type definitions
that may be public. For example, we define a type synonym for
polymorphic pairs, a swap function for pairs, and a private test
expression that is not exported:

module Data.Pair
import Foo
public type Pair = \A::*. \B::*. {fst:A, snd:B}
public val swap = \A::*. \B::*. \p:Pair A B.

3 Implementation available online: http://sugarj.org/fomega

Kind judgments ∼C |– ∼T :: ∼K

∼C |– ∼T1 :: (∼K => *) => ∼K => *
∼C |– ∼T2 :: ∼K
================================= K–Mu
∼C |– mu (∼T1, ∼T2) :: *

Type judgments ∼C |– ∼e : ∼T

∼C |– ∼T :: *
∼C |– ∼T ∼> mu (∼T1, ∼T2)
∼C |– ∼e : ∼S
∼C |– ∼S ∼> mu (∼T1, ∼T2)
∼C |– ∼T2 :: ∼K
=================================== T–Unfold
∼C |– unfold [∼T] ∼e :

∼T1 (\A::∼K. mu (∼T1, A)) ∼T2

Figure 5. Kind and type rule for higher-order iso-recursive types.

{fst=p!snd, snd=p!fst}
val test = swap [Nat] [Bool] {fst=1, snd=false}

The definition of a module is valid if a signature is derivable, that
is, if each type (value) definition is well-kinded (well-typed). The
initial context for the derivation of a signature is build from the
signatures of imported modules.

Higher-order recursive types. SugarFomega implements a form
of higher-order iso-recursive types similar to Crary and Weirich [3].
Figure 5 shows the kind rule for our recursive type operator mu and
the type rule for unfold, which performs a one-step unfolding of
a recursive type. A recursive type is a pair mu (T1, T2) of types
where T2 is of kind K and turns the higher-kinded recursive type
operator T1 into a proper type.

For example, in SugarFomega, we can define a polymorphic list
with the following type synonyms:

type LRec = \List::* => *. \A::*.
<Nil: {}, Cons: {hd:A, tl:List A}>

type List = \A::*. mu (LRec, A)

The isomorphism between, for example, List Nat and its one-step
unfolding is witnessed by fold and unfold according to their type
rules:

mu (LRec, Nat)

<Nil: {}, Cons: {hd:Nat, tl:mu (LRec, Nat)}>

unfold [List Nat] fold [List Nat]

4.2 The SugarFomega type checker
To define the type system of Fω , we implemented a domain-specific
language for the declaration of inference rules:

Premise1
· · ·
Premisen
========== RuleName
Conclusion

Our inference rules are layout-sensitive so that premises and con-
clusions can span multiple lines, given they adhere to the offside
rule [9].

The conclusion of a rule as well as each premise is a judgment.
Whereas our formalization of SOUNDEXT in Section 3 was limited
to type judgments, for System Fω we generalized SOUNDEXT to
support multiple kinds of judgments. The most important judgments
are:

336

http://sugarj.org/fomega

Γ |– defs ==> σ Signature judgments
Γ |– e : T Type judgments
Γ |– T :: K Kind judgments
Γ |– T ∼> T ′ Normalization judgments

For example, the kind and type rule for recursive types in Figure 5
are implemented in our language for inference rules, where metavari-
ables are prefixed by a tilde ∼. In fact, we implemented most of the
Fω type system through the declaration of inference rules.

We compile the inference rules to executable Stratego code that
is called during the analysis phase of SugarFomega. The compiler
has hard-wired knowledge about how to compile the different
judgments. For example, our compiler makes the following common
assumptions about input and output positions of judgments:

Input Input Output

Γ |– defs ==> σ

Γ |– e : T

Γ |– T :: K
Γ |– T ∼> T ′

The code generated from different inference rules has a similar
structure: First, we check that the rule’s input matches the input
expected by the conclusion. Second, we check the premises in
order of appearance. Third, we compute the conclusion’s output.
For signature, kind, and type judgments, we store the output of a
conclusion as annotations of the corresponding subject, so that we
can reuse the signature, kind, or type during desugaring and in editor
services such as hover help. Should an error occur, we annote them
to the defective term instead of annotating a signature, kind, or type.
Furthermore, note that the order of premises is significant: Before a
metavariable can be used as input of a premise or as output of the
conclusion, it must be introduced in an output position of a premise
or as input of the conclusion.

Our compiler translates each rule into a certain Stratego strat-
egy. For example, the compiler translates kind rules into defini-
tions of annotate–kind and type rules translate into definitions of
annotate–type. We eagerly normalize types and use Stratego’s sup-
port for backtracking to explore all possible derivations (a compiler
that produces efficient code for finding derivations is orthogonal to
the work presented in this paper and left for future work).

We illustrate the compilation of inference rules by example of the
SugarFomega type rule for let expressions (∼ marks a metavariable,
∼% marks a metavariable only for identifiers):

∼C |– ∼e1 : ∼T1 // (P1)
∼C |– ∼S :: * // (P2)
∼C |– ∼S ∼> ∼U // (P3)
∼C |– ∼T1 ∼> ∼U // (P4)
(∼C;∼%x:∼S) |– ∼e2 : ∼T2 // (P5)
======================================= T–Let
∼C |– (let ∼%x : ∼S = ∼e1 in ∼e2) : ∼T2

Figure 6 presents a simplified version of the Stratego code generated
for T–Let:

• Line 2 matches the input of the conclusion of rule T–Let using
abstract syntax. Only if the input is a let expression, the type
derivation continues with an instantiation of rule T–Let.
• Lines 3 and 4 implement premise (P1). The type of e1 is

computed and annotated by a recursive call. We require the
successful typing of e1 by retrieving its type into variable T1

using get–type.
• Lines 5 to 8 implement premise (P2). The kind of S is computed,

annotated, and retrieved into a temporary variable tmp1. (P2)

demands S to be of kind *, which we check using kind–eq–star
in line 7. kind–eq–star returns a possibly empty list of error
messages that we annotate to S in line 8.

1 annotate–type =
2 ?(C, node@Let(x, S, e1, e2))
3 ; <annotate–type> (C, e1)
4 ; <get–type> e1 => T1
5 ; <annotate–kind> (C, S)
6 ; <get–kind> S => tmp1
7 ; <kind–eq–star> tmp1 => msgs1
8 ; <add–context–errors> (msgs1, S)
9 ; <norm> (C, S) => U

10 ; <norm> (C, T1) => tmp2
11 ; <type–eq> (U, tmp2) => msgs2
12 ; <add–context–errors> (msgs2, T1)
13 ; <annotate–type> (CtxBindVar(C, x, S), e2)
14 ; <get–type> e2 => T2
15 ; <put–type> (T2, node)

Figure 6. Stratego code generated for T–Let.

• Lines 9 to 12 handle premises (P3) and (P4). The normalization
judgment of (P3) compiles into a call of the type-normalization
strategy norm. During translation of (P4), the compiler recognizes
that the output U appears as output of a preceding judgment,
namely (P3). Therefore, the normal form of T1 is stored in a
temporary variable tmp2. The call of type–eq in line 11 checks
that the types bound to U and tmp2 indeed are equal (up to
renaming of bound variables). type–eq returns a possibly empty
list of error messages that we annotate to type T1.
• Lines 13 and 14 implement (P5), similar to the translation of (P1)

but with an enriched context that contains the binding ∼%x:∼S
represented by the term CtxBindVar(C, x, S).
• Finally, line 15 annotates the resulting type to the let expression.

We use our domain-specific language for inference rules to im-
plement the whole type system of System Fω: kinding, typing, type
normalization, and deriving module signatures. We provide Sugar-
Fomega programmers with the same language to define inference
rules for language extensions.

4.3 Writing language extensions in SugarFomega
SugarFomega allows users to define language extensions in reg-
ular base-language modules. A SugarFomega extension takes the
following form:

module Name
syntax { SDF2 definitions }
desugaring Strategy name { Stratego rewrite rules }
typing { Typing rules }

That is, a SugarFomega extension consists of an extended syntax,
desugaring transformations from the extended syntax into the
(possibly further extended) base language Fω , and type rules for
programs of the extended syntax. For example, Figure 7 displays
the definition of a SugarFomega extension for let expressions.

• The syntax section adds a new production to the nonterminal
Expr that is defined in the base grammar of SugarFomega. The
extension declares that a let expression can be used whenever a
Expr is expected. The annotation {cons("Let")} declares that a
let expression is represented by an abstract syntax tree node of
name Let.
• The desugaring section defines a Stratego rule desugar–let that

implements the necessary rewriting. We use concrete syntax [29]
for SugarFomega code in the declaration of rewrite rules. Like
in type rules, a tilde ∼ marks a metavariable. Often, it is useful to
decompose a desugaring into multiple strategies. The identifier
following the keyword desugaring names the entry point of
desugaring that is called by the SugarFomega compiler.

337

module extensions.Let

syntax {
context–free syntax

"let" ID ":" Type "=" Expr "in" Expr –> Expr {cons("Let")}
}

desugaring desugar–let {
desugar–let :
|[let ∼%x : ∼T = ∼e1 in ∼e2]| –>
|[(\ ∼%x : ∼T. ∼e2) ∼e1]|

}

typing {
∼C |– ∼e1 : ∼T1
∼C |– ∼S :: *
∼C |– ∼S ∼> ∼U
∼C |– ∼T1 ∼> ∼U
(∼C; ∼%x:∼S) |– ∼e2 : ∼T2
======================================= T–Let
∼C |– (let ∼%x : ∼S = ∼e1 in ∼e2) : ∼T2

}

Figure 7. Declaration of a type-sound extension for let expressions.

• The typing section defines a type rule for let expressions as
discussed in the previous subsections.

Since the language extension for let expressions is represented
by a regular SugarFomega module, we can activate the extension
by importing the module. The SugarFomega system then loads the
grammar extensions, applies the desugarings to parsed code, and
performs static analysis according to predefined and user-defined
inference rules.

module test.Let
import extensions.Let

val test = let p : {x:Nat, y:Nat} = {x=1, y=2}
in p!x

4.4 Verifying type-soundness of extensions
SugarFomega verifies the soundness of each language extension
using a modified version of SOUNDEXT (Section 3) that supports
all judgments required in the type system of System Fω and knows
about the input and output positions of judgments. Moreover, due
to type-level abstraction in System Fω , we require equivalent
types everywhere we required syntactically equal types before. As
usual, we check type equivalence by comparing the normal forms
of types. Specifically, we modified the verification procedure for
SugarFomega as follows:

• Type rule: Rewrite expression and assert equality of the normal
forms of the expect and the actual type.
• Kind rule: Rewrite type and assert equality of the expect and the

actual kind.
• Signature rule: Rewrite definitions and assert equality of the

expected and the actual signature.
• Type-normalization rule: Rewrite input type and assert equality

of the normal forms of the input and the output type.

We have not yet formally proved that these criterions entail type
preservation. But we are very confident that they indeed do since we
can in principle encode the different judgments into SOUNDEXT’s
judgment form by auxiliary constructors.

Like in Section 3, we use the inference engine to verify the
soundness of user-defined inference rules. Since we compile infer-
ence rules to Stratego, we use Stratego’s support for dynamically

1 verify–context–rule =
2 ?TypingRule(premises, TypingJudgment(C, e, T))
3 if <desugar–one–step> e => e–des then
4 with–scoped–axioms(
5 <activate–dynamic–axioms> premises
6 ; <annotate–type> (C, e–des)
7 ; <get–type <+ !TyUnknown> e–des => U
8 ; <norm> (C, T) => T’
9 ; <norm> (C, U) => U’

10)
11 ; <collect–all–errors> e–des => errs
12 ; if <not(is–empty)> errs then
13 !errs
14 else if <not(type–eq)> (T’, U’) then
15 !["Type mismatch"]
16 else
17 ![]
18 end end
19 else
20 !["Could not desugar conclusion"]
21 end

Figure 8. SugarFomega verification procedure for type rules.

scoped rewrite rules [2] to activate axioms dynamically. For exam-
ple, the strategy activate–dynamic–axiom activates an axiom for a
type judgment:

activate–dynamic–axiom =
?TypingJudgment(C, e, T)

; rules(Dynamic–Annotate–Type :+
(C, e) –> <put–type> (T, e))

Given a type judgment, activate–dynamic–axiom extends the defini-
tion of Dynamic–Annotate–Type for the input (C, e). For example, for
the premise like ∼C |– ∼e1 : ∼T1 from T–Let, activate–dynamic–axiom
activates the following rule:

Dynamic–Annotate–Type :
(C@Metavar("C"), e@Metavar("e1")) –>
<put–type> (Metavar("T1"), e)

As required, this rule only accepts the specific term Metavar("e1"),
and not any other expression. We hook Dynamic–Annotate–Type into
the regular type checking routine annotate–type by extending it as
follows:

annotate–type = Dynamic–Annotate–Type

That is, whenever a type judgment is checked, the type checker will
consider Dynamic–Annotate–Type, too.

We show the Stratego code for verifying the soundness of a type
rule in Figure 8. This implementation corresponds to the verification
procedure of SOUNDEXT with the above-mentioned modifications.
In SugarFomega, the verification procedure acts as a static analysis
for checking modules that define language extensions.

• Strategy verify–context–rule gets a typing rule as input and
produces a possibly empty list of error messages (lines 1 and 2).
• In line 3, verify–context–rule tries to desugar the expression

e of the conclusion one step. If this fails, an error message is
emitted and the verification fails (line 20).
• If the desugaring is successful, line 5 enables the premises of

the type rule as additional axioms. To prevent that axioms are
active outside the verification procedure, we scope them using
the strategy with–scoped–axioms (line 4).
• While the additional axioms are active, we type check the

desugared expression des–e (line 6). We retrieve the annotated
type in line 7 or, if type checking fails, use TyUnknown instead.

338

• To make the expected and the actual type comparable, we
normalize them in lines 8 and 9.
• Afterwards, we collect all errors that have occurred during type

checking of des–e (line 11). If we find some errors, we return
these errors and verification fails.
• Otherwise, we compare the normalized expected type T’ and the

normalized actual type U’ (line 14). If they are not equal, we
return an error message and verification fails.
• Otherwise, no errors are emitted and the verification succeeds.

We have implemented similar verification procedures for the
other rules used in SugarFomega, in particular, kinding, type nor-
malization, and deriving module signatures. As we demonstrate
in the following section, SugarFomega permits users to integrate
even sophisticated language features as language extensions, for
which SugarFomega modularly, statically, and automatically verifies
type-soundness.

5. Case studies
In the previous sections, we used let expressions as an exemplary
language extensions that is easy to define and that SOUNDEXT was
able to prove sound. In the present section, we further demonstrate
the applicability of SOUNDEXT by extending SugarFomega with
language extensions for monadic do blocks and algebraic data types.

5.1 Monadic do blocks
Monads enable programmers to abstract over different computa-
tional flavors, such as state-full computation or non-deterministic
computation [20]. Due to this abstraction, it is possible to define
combinators that are independent of concrete computational fla-
vors. For example, the function liftM2 lifts any pure function of
type A –> B –> C into a monadic function M A –> M B –> M C for any
monad M.

In SugarFomega, we can encode a monad as a type operator
M :: ∗ ⇒ ∗ with associated bind and return functions:
bind : ∀A :: ∗. ∀B :: ∗. M A→ (A→M B)→M B
return : ∀A :: ∗. A→M A

To support convenient programming with monads, we have de-
veloped a language extension of SugarFomega that introduces do
notation similar to Haskell. We provide type rules for do blocks
that detect type errors prior to desugaring. SugarFomega verifies
the soundness of our extension to guarantee no type errors occur in
desugared code.

Here is a simple do block as supported by our extension of
SugarFomega:

do [T] {
x:T1 <– e1

; y:T2 <– e2
; e3 }

A do block starts with a keyword do, followed by the result type of
the computation that the do block represents. Inside a do block
occurs a semicolon-separated list of computational statements,
each of which may bind their result to a local variable. The last
statement of a do block must be an expression that returns a value
corresponding to the result type of the do block. Note that the type
annotations in our encoding of do blocks are not strictly necessary; in
Section 6 we discuss how to drop them while retaining automatically
verifiable type-soundness.

As shown in Figure 9, we desugar a do block into an expression
that is parameterized over a monad, that is, over a type operator
M and functions bind and return. The first desugaring rule handles
do blocks that only contain a final expression, whereas the second

desugaring desugar–do {
desugar–do :
|[do [∼T] { ∼e }]| –>
|[\M::*=>*.

\bind: forall A::*. forall B::*.
M A –> (A –> M B) –> M B.

\return: forall A::*. A –> M A. ∼e]|

desugar–do :
|[do [∼T] { ∼%x : ∼S <– ∼e1; ∼stmts }]| –>
|[\M::*=>*.

\bind: forall A::*. forall B::*.
M A –> (A –> M B) –> M B.

\return: forall A::*. A –> M A.
bind [∼S] [∼T] ∼e1

(\∼%x:∼S. do [∼T] { ∼stmts } [M] bind return)]|
}

Figure 9. Desugaring rules for do blocks.

desugaring rule handles do blocks with multiple statements. In
contrast to let expressions, the desugaring of do blocks requires
recursion. We trigger recursion in the second desugaring rule by
generating code that contains a residual do block, to which we
propagate M, bind, and return.

SugarFomega only allows programmers to write programs that
can be type checked before desugaring. Accordingly, we require
type rules for do blocks. In Figure 10, we display the type rule for do
blocks with multiple statements. The type of the conclusion clearly
demonstrates our choice to implement do blocks as polymorphic
functions. The premises (P3) and (P7) express the essential context
conditions of do blocks:

• The right-hand side ∼e1 of a monadic binding must be well-typed
in a context that provides bind and return.
• The subsequent statements ∼stmts must be well-typed in the

same context enriched by the bound variable ∼%x.

SugarFomega automatically verifies that these requirements are
sufficient to guarantee that the desugared code is well-typed. For
example, this allows us to define liftM2 using do notation:

module MonadLift
import extensions.DoBlock
val liftM2 = \M::*=>*.

\bind: forall A::*. forall B::*.
M A –> (A –> M B) –> M B.

\return: forall A::*. A –> M A.
\A::*. \B::*. \C::*.
\f: A –> B –> C. \m1: M A. \m2: M B.
do [C] {

x:A <– m1
; y:B <– m2
; return [C] (f x y)

} [M] bind return

5.2 Algebraic data types
The type system of SystemFω is very flexible and expressive, but the
encoding of tree-like data structures in terms of variants, records, and
recursive types is cumbersome. To this end, we use SugarFomega
to define a type-sound extension for algebraic data types like the
following definition for polymorphic lists:

data List (A::*) = Nil {}
| Cons {hd: A, tl: List A}

This definition is desugared into a type synonym List and con-
structor functions Nil and Cons that type-normalize to the following
definitions:

339

(∼C; M::*=>*) |– ∼S :: * // (P1)
(∼C; M::*=>*) |– ∼T :: * // (P2)
(∼C; M::*=>*; bind: forall A::*. forall B::*. M A –> (A –> M B) –> M B // (P3)

; return: forall A::*. A –> M A) |– ∼e1 : ∼R1
(∼C; M::*=>*) |– ∼R1 ∼> M ∼U1 // (P4)
(∼C; M::*=>*) |– ∼U1 :: * // (P5)
(∼C; M::*=>*) |– ∼S ∼> ∼U1 // (P6)
(∼C; M::*=>*; bind: forall A::*. forall B::*. M A –> (A –> M B) –> M B // (P7)

; return: forall A::*. A –> M A; ∼%x:∼S) |– do [∼T] { ∼stmts } :
forall M::*=>*. (forall A::*. forall B::*. M A –> (A –> M B) –> M B) –> (forall A::*. A –> M A) –> M ∼T

== T–DoCons
∼C |– do [∼T] { ∼%x : ∼S <– ∼e1; ∼stmts }

: forall M::*=>*. (forall A::*. forall B::*. M A –> (A –> M B) –> M B) –> (forall A::*. A –> M A) –> M ∼T

Figure 10. Typing rule for a do block with multiple statements.

type List = \A::*. mu (\List::*=>*. \A::*.
<Nil:{}, Cons:{hd:A, tl:List A}>, A)

val Nil = \A::*. fold [List A]
(<Nil={}> as <Nil:{}, Cons:{hd:A, tl:List A}>)

val Cons = \A::*. \hd:A. \tl:List A. fold [List A]
(<Cons={hd=hd, tl=tl}> as

<Nil:{}, Cons:{hd:A, tl:List A}>)

To achieve the desugaring of algebraic data types, we need to
exercise two features of SugarFomega not discussed in detail
before: abstract intermediate program representations for which no
concrete syntax exists and type-level language extensions.

Abstract intermediate program representations. Since the verifi-
cation procedure of SOUNDEXT and SugarFomega require a rewriting
to apply to the subject of a type rule, language extensions must be
desugared in small-step fashion. For example, for do blocks the sec-
ond desugaring created a residual do block, which is transformed in
a later iteration of the fix-point desugaring. In a sense, we got lucky
for do blocks, because the residual program could be described by
concrete syntax.

More generally, and for algebraic data types in particular, it
is not always possible to describe residual programs via concrete
syntax (which users would be allowed to write, too). For this reason,
SugarFomega allows desugaring transformations and inference rules
to use abstract intermediate program representations instead of
concrete syntax. Note that this was not a problem for SOUNDEXT

because we only used abstract syntax anyway.
An extension has to declare the abstract-syntax nodes it wants to

use as part of the desugaring:

desugaring desugar–adt {
signature constructors

ADT–DCON: ID * DataParams *
ID * Decls * DataCons –> Term

ADT–DCON–FIELDS: Decls –> Term
ADT–TABS: DataParams * Expr –> Term

...
}

Afterwards, the extension can use these nodes in place of concrete
syntax by prefixing them with M∼. For example, we use an abstract
intermediate node ADT–TABS to prefix the code generated for a
constructor with the type parameters of the algebraic data type
(a nested occurrence of |[]| escapes back to concrete syntax):

desugar–data :
|[M∼ADT–TABS(|[]|, e) |] –>
|[∼e]|

desugar–data :
|[M∼ADT–TABS(|[(∼%X::∼K) ∼params]| , e)]| –>
|[\∼%X::∼K. M∼ADT–TABS(params, e)]|

∼C |– ∼e : ∼T
======================================= T–ADT–TABS1
∼C |– M∼ADT–TABS(|[]|, e) : ∼T

(∼C; ∼%X::∼K) |– M∼ADT–TABS(params, e) : ∼T
== T–ADT–TABS2
∼C |– M∼ADT–TABS(|[(∼%X::∼K) ∼params]|, e)

: forall ∼%X::∼K. ∼T

In our case study for algebraic data types, we exclusively represent
intermediate data-type fragments via abstract syntax. To this end,
we employ 19 different abstract-syntax nodes for the generation of
the type synonym and the constructor functions.

Type-level and kind-level language extensions. As described in
Section 4.2 and 4.4, SugarFomega supports syntactic sugar at all
levels: kinds, types, and expressions. However, an extension is only
usable if there are inference rules that can be employed for the
validation of a program using the extended syntax. For expression-
level extensions, we have shown for let expressions and do blocks
that type rules can provide the necessary validation. For type-level
and kind-level extensions, other means are necessary.

For type-level extensions, there are two possibilities for the
specification of valid usage patterns of extended types: using kind
rules only or also adding type-normalization rules. These alternatives
have an interesting consequence when using an abstract intermediate
representation for extended types: The extended types can be
introduced nominally or structurally. For example, consider the
following kind rule that specifies the kind of the residual type
ADT–ABS.

(∼C;∼%X::∼K1) |– M∼ADT–ABS(params, T) :: ∼K2
== K–ADT–ABS2
∼C |– M∼ADT–ABS(|[(∼%X::∼K1) ∼params]|, T)

:: ∼K1 => ∼K2

Since SugarFomega performs type checking prior to desugaring,
this kind rule only applies to residual types ADT–ABS, and nothing
else. Compare this with the following type-normalization rule that
specifies to what the residual type ADT–ABS normalizes:

∼C |– M∼ADT–ABS(params, T) ∼> ∼T2
=== N–ADT–ABS2
∼C |– M∼ADT–ABS(|[(∼%X::∼K) ∼params]|, T)

∼> \∼%X::∼K. ∼T2

Since type normalization happens every time two types are com-
pared, this type-normalization rule permits the usage of ADT–ABS
wherever a type \∼X::∼K. ∼T is expected.

For our case study of algebraic data types, the difference is
whether values of the generated type synonym can be defined only
with the generated constructors (nominal) or with any expression

340

of the right type (structural). Note that kind rules are required in
most cases anyway, because during verification of type rules with
kind-judgment premises, there is typically not enough information
on types to perform type normalization.

For kind-level extensions, there is no such choice because there
are no explicit sorts or super-kinds in SugarFomega. However, we
added context-free kind normalization to permit the generation
of kinds depending on the input program. For example, we use
the following kind-normalization rule to permit the usage of the
residual kind ADT–CK as a higher-order kind (used to describe the
type arguments of an algebraic data-type constructor such as List):

M∼ADT–CK(params) =::=> ∼K2
================================= KN–ADT–PK2
M∼ADT–CK(|[(∼%X::∼K) ∼params]|)
=::=> ∼K => ∼K2

In our SugarFomega implementation of algebraic data types, we
use kind rules, type-normalization rules, and kind-normalization
rules. However, we found that our normalization rules always
resemble the rewriting of the desugaring rules. As consequence,
the verification is trivial because the desugaring of the normalization
input yields the normalization output. Moreover, this is obvious
boilerplate that we hope to remedy in a future version of our domain-
specific language for inference engines.

Summary. Algebraic data types are by far the most sophisticated
language extension we have implemented in SugarFomega. The
whole extension comprises 19 abstract-syntax nodes, 34 desugaring
rules, 4 module-signature derivation rules, 7 type rules, 13 kind
rules, 21 type-normalization rules, and 4 kind-normalization rules.

6. Type reconstruction
As briefly mentioned before, quite a few of the type annotations we
currently require are not necessary, because the defining expressions
of the involved variables are statically available. For example,
the language extension for let expressions (Figure 7) requires a
type annotation for the bound variable, because such annotation is
required in the desugared lambda abstraction. To reduce the number
of required type annotations, we started to experiment with a type-of
metalanguage construct that permits the reuse of an expression’s
type. For example, with the type-of construct, we can support let
expressions without type annotations:

desugaring desugar–let {
desugar–let :

|[let ∼%x = ∼e1 in ∼e2]| –>
|[(\∼%x:$(typeof ∼e1). ∼e2) ∼e1]|

}

This desugaring is only applicable if ∼e1 is well-typed, in which
case the type of ∼e1 is copied into the generated program. We are
currently evaluating different alternatives for implementing the type-
of construct, such that type-of is supported during the verification
of extensions and while type checking user programs. Moreover, we
are currently investigating how to support type-of constructs that
are transitively generated, for example, by another extension that
produces let expressions.

7. Related work
Most approaches for language extensibility have in common that
type checking is only performed on the full expansion of the
extended syntax, that is, after desugaring. There is no validation
of transformation rules to ensure they produce well-typed code of
the required type. Even in Typed Racket [27], a gradually typed
Scheme dialect, macros are untyped and type checking operates on
fully desugared core syntax. While some systems [4, 25] require

the transformation itself to be a well-typed function, the employed
program representations are not typed enough to make sufficient
statements about the typing properties of the generated code. On the
other hand, existing highly typed program representations as known
from dependently typed languages such as Agda or from similar
encodings in Haskell, have not yet been adopted by approaches for
language extensibility.

Herman’s λm-calculus [16] augments a Scheme-like macro
system with signatures for macro definitions that describe their
binding structure. These signatures allow to verify if a macro
generates code that matches the signature. For example, this can be
used to ensure that an argument bound by the macro must be used at
a binding position in the generated code. The λm-calculus enables
the definition of α-equivalence for unexpanded Scheme programs.
However, guarantees are restricted to static scoping aspect of macros
and do not scale to the static typing of terms.

MacroML [14] is an extension of the ML programming language
with the possibility to define generative and binding macros in a
statically typed setting. The semantics of a MacroML program is
defined by a translation into the multi-stage programming language
MetaML [26] and a type preservation result of this translation is
proved. In contrast to MacroML, SOUNDEXT allows desugarings
to inspect and decompose user programs using pattern matching.
Furthermore, MacroML macros that introduce new binding con-
structs have to be variations of predefined binding structures like
lambda abstraction to unambiguously identify binding and bound
occurrences of variables. In contrast, SOUNDEXT allows type rules
to freely specify extension-specific scoping of identifiers via the
context in judgments. For example, a simple SugarFomega exten-
sion openpair could bring the components of a pair into the current
scope by binding variables fst and snd. The corresponding type rule
would clearly document the bound variables fst and snd and their
scope. Such macro could not be defined in MacroML.

MetaHaskell [18] adds type-safe metaprogramming facilities
with different object languages to Haskell. To turn a language into a
MetaHaskell object language, a quasiquoter for the surface syntax,
a type checker, and a unification procedure for object-language
types have to be provided. The object language type checker is
called by the MetaHaskell type checker to check embedded object
programs. This technique only yields a type-safe type system if
the object language’s type checker is sound with respect to the
dynamic semantics of the object language. In contrast to SOUNDEXT,
this condition is not checked mechanically but has to be manually
verified.

Ziggurat [12, 13] is a metalanguage to extend other programming
languages through Scheme-like macros and to attach static analyses
like type checking or termination analysis to the new syntax. In
Ziggurat, nodes of the syntax tree are represented as objects with a
parsing and a rewrite function in an an object-oriented system called
lazy delegation. Lazy delegation permits the implementation of static
analyses explicitly for a node by implementing the corresponding
method, or implicitly by delegating analysis to the objects generated
during desugaring. However, static analyses themselves are not
validated against desugarings and there is the danger that a malicious
analysis of a subclass overrides a sound analysis of a super class.

Pluggable type systems [1] extend an existing type systems
with additional constraints. Pluggable type systems may reject
programs that, for example, do not comply to a certain design
pattern or introduce new types. Implementations of pluggable type
systems like JavaCOP [19] or the Checker Framework [21] provide
infrastructure to implement type analyses and to integrate them
into the semantic analysis phase of the compiler. The soundness
of a pluggable type system is not verified mechanically, this is the
implementer’s responsibility. But JavaCOP has another interesting
approach with respect to soundness: testing for soundness violations.

341

Their test harness supports the instrumentation of Java byte code
with runtime checks to detect “stuck expressions” that the pluggable
type system is supposed to prevent statically.

Roberson et al. [23] propose model checking to automatically
prove the soundness of a type system for all program states of at
most some finite size. Their technique is similar to ours: Identify
well-typed intermediate programs, perform one step of reduction,
and prove that the resulting program is also well-typed. However,
the most important difference is that Roberson et al. inspect con-
crete program states and apply sophisticated pruning techniques to
avoid state-space explosion, whereas SOUNDEXT performs symbolic
rewriting and equational reasoning.

Heeren et al. [15] propose an extensible type-inference mecha-
nism in which libraries can define unification constraints. Since their
system does not support syntactic extensibility, library functions
are typeable in the base type system. Type-system extensions are
verified sound by requiring that they only define specialized versions
of base type rules. While less expressive, this approach is useful
for defining library-specific error messages and we plan to integrate
their mechanism into SugarFomega.

8. Conclusion and future work
We presented SOUNDEXT, a formalism for syntactically extending
a base language without affecting type soundness. In particular,
SOUNDEXT verifies language extension to guarantee that desugar-
ings adhere to type preservation and progress. Accordingly, code
generated from desugarings cannot contain type errors, which would
break important abstraction barriers for programmers.

We applied SOUNDEXT to the advanced base language Sys-
temFω , resulting in SugarFomega, and successfully added nontrivial
extensions for do blocks and algebraic data types in a type-sound
way. In future work, we hope to use SOUNDEXT to validate the
desugarings and type rules of language extensions currently in use
in compilers such as GHC, which will require solid support for type
reconstruction and the generation of more efficient type checkers
from inference rules.

References
[1] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival

of Dynamic Languages, 2004. Available at http://bracha.org/
pluggableTypesPosition.pdf, accessed at Mar. 26 2013.

[2] M. Bravenboer, A. v. Dam, K. Olmos, and E. Visser. Program
transformation with scoped dynamic rewrite rules. Fundamenta
Informaticae, 69(1-2):123–178, 2006.

[3] K. Crary and S. Weirich. Flexible type analysis. In Proceedings of
International Conference on Functional Programming (ICFP), pages
233–248. ACM, 1999.

[4] D. de Rauglaudre. Camlp4 reference manual. http://caml.inria.
fr/pub/docs/manual-camlp4/index.html, 2003. accessed Mar. 26
2013.

[5] S. Erdweg. Extensible Languages for Flexible and Principled Domain
Abstraction. PhD thesis, Philipps-Universiät Marburg, 2013.

[6] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition
untangled. In Proceedings of Workshop on Language Descriptions,
Tools and Applications (LDTA), pages 7:1–7:8. ACM, 2012.

[7] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and
E. Visser. Growing a language environment with editor libraries. In Pro-
ceedings of Conference on Generative Programming and Component
Engineering (GPCE), pages 167–176. ACM, 2011.

[8] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 391–406. ACM, 2011.

[9] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Layout-sensitive
generalized parsing. In Proceedings of Conference on Software

Language Engineering (SLE), volume 7745 of LNCS, pages 244–263.
Springer, 2012.

[10] S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive
language extensibility with SugarHaskell. In Proceedings of Haskell
Symposium, pages 149–160. ACM, 2012.

[11] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[12] D. Fisher and O. Shivers. Static analysis for syntax objects. In
Proceedings of International Conference on Functional Programming
(ICFP), pages 111–121. ACM, 2006.

[13] D. Fisher and O. Shivers. Building language towers with Ziggurat.
Functional Programming, 18(5-6):707–780, 2008.

[14] S. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In Proceedings of
International Conference on Functional Programming (ICFP), pages
203–217. ACM, 2001.

[15] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In Proceedings of International Conference on Functional
Programming (ICFP), pages 3–13. ACM, 2003.

[16] D. Herman. A Theory of Typed Hygienic Macros. PhD thesis,
Northeastern University, Boston, Massachusetts, 2012.

[17] J. Łoś and R. Suszko. Remarks on sentential logics. Indagationes
Mathematicae, 20:177–183, 1958.

[18] G. Mainland. Explicitly heterogeneous metaprogramming with Meta-
Haskell. In Proceedings of International Conference on Functional
Programming (ICFP), pages 311–322. ACM, 2012.

[19] S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and
J. Noble. JavaCOP: Declarative pluggable types for Java. Transactions
on Programming Languages and Systems (TOPLAS), 32(2):4:1–4:37,
2010.

[20] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[21] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst.
Practical pluggable types for Java. In Proceedings of International
Symposium on Software Testing and Analysis (ISSTA), pages 201–212.
ACM, 2008.

[22] B. C. Pierce. Types and programming languages. MIT press, 2002.
[23] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Efficient

software model checking of soundness of type systems. In Proceedings
of Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 493–504. ACM, 2008.

[24] A. Schwerdfeger and E. Van Wyk. Verifiable composition of deter-
ministic grammars. In Proceedings of Conference on Programming
Language Design and Implementation (PLDI), pages 199–210. ACM,
2009.

[25] T. Sheard and S. Peyton Jones. Template meta-programming for
Haskell. In Proceedings of Haskell Workshop, pages 1–16. ACM,
2002.

[26] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2):211–242,
2000.

[27] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped
languages. In Proceedings of International Conference on Functional
Programming (ICFP), pages 117–128. ACM, 2010.

[28] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

[29] E. Visser. Meta-programming with concrete object syntax. In Pro-
ceedings of Conference on Generative Programming and Component
Engineering (GPCE), volume 2487 of LNCS, pages 299–315. Springer,
2002.

[30] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building program
optimizers with rewriting strategies. In Proceedings of International
Conference on Functional Programming (ICFP), pages 13–26. ACM,
1998.

[31] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

342

http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf
http://caml.inria.fr/pub/docs/manual-camlp4/index.html
http://caml.inria.fr/pub/docs/manual-camlp4/index.html

	Introduction
	Illustrating example
	SoundExt
	A language for declaring extensions
	Assumptions about the rewrite engine
	Assumptions about the inference engine
	Extension soundness
	Metatheory
	Extension composition and overlapping definitions
	Summary

	SugarFomega
	The base language System F
	The SugarFomega type checker
	Writing language extensions in SugarFomega
	Verifying type-soundness of extensions

	Case studies
	Monadic do blocks
	Algebraic data types

	Type reconstruction
	Related work
	Conclusion and future work

